NORTHWEST NAZARENE UNIVERSITY

Creating and Configuring a Continuous Integration Machine for a Software Package

THESIS
Submitted to the Department of Mathematics and Computer Science
in partial fulfillment of the requirements
for the degree of
BACHELOR OF SCIENCE

Nathan Emerson

2017

THESIS

Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements
for the degree of
BACHELOR OF SCIENCE

Nathan Emerson

2017

Creating and Configuring a Continuous Integration Machine for a Software Package

Author:

Approved:

Approved:

Approved:

Nl rtiom

Nathan Emerson

B

/
Barry Myers, Ph.D., Professor of Computer Science, Department of

Mathematics and Computer Science, Faculty Advisor
/

7«/ f;/év /4// L7 2oLz

David Johnson, Senior Software Engineer, Schweitzer Engineering
Laboratories, Inc.

J P N

Ld L/ L
Barry Myers, Ph.D., Chair,

Department of Mathematics and Computer Science

ABSTRACT

Integration of a Continuous Integration Machine with Automated Functional Test Suite for a
Software Package.
EMERSON, NATHAN (Department of Mathematics & Computer Science), MYERS, DR
BARRY (Department of Mathematics & Computer Science).

A system for running Continuous Integration (CI) testing on a commercial software package
called Device Manager, created at Schweitzer Engineering Laboratories, Inc., was created using
Bamboo, an enterprise business tool from Atlassian. This system utilizes existing tests and
makes them compatible with Bamboo. The system uses Windows commands to utilize file
operations on the host system and pulls files down from code repositories. The CI machine
builds the solution using a code base, then runs tests if the build is successful. The system runs
through two types of tests. First, it executes several thousand unit tests, which test source code
functionality. Second, the CI machine records all the test results and build files and publishes
them as artifacts that a user can download and utilize for debugging or manual testing. The CI
machine was completed and successfully runs on each new build of the software, providing pass
or fail values for tests that were run, which gives Software Engineers the knowledge needed to
correct or maintain the software’s codebase.

Acknowledgments

| would like to thank the Device Manager team at SEL that were on the team throughout
the length of my work on the project. David Johnson, Alan Morrison, John Bird, and
Chad Johnson, thank you for your support throughout my internship and my work on
this project. | would also like to thank Amanda Marble, without whose help with career-
advancing activities and resume guidance | may not have been set up for success in my
internship. 1 would lastly like to thank Barry Myers and Dale Hamilton, the professors |

have learned from over the last four years of class.

Table of Contents

TG PAGE. ottt i
ABSTRACT ..ottt e e b e b e e e bt e be e ae s ebt e bttt iii
ACKNOWIBAOMENES ..t iv
Table of CONTENESoiii e et v
TADIE OF FIQUIS ..eeiiiiiie ettt e e e et a e e e vi
BacCKGroUNG. ..o e e ate s 1
2=] o] 1T DTSR 3
EEXECULION L. et e e e st e e e e na e e nba s 4
CONCIUSION ...t e e e bt e st be e tbt e e eab b e e s tb e e e anb e e 10
WOIKS CHE ... et r e e s e e e e e e nes 12
FY o] o =1 Lo [TS PR PR OPROPOPPPPTO 13
AT —Bamboo Project VIBW. ... e 13
A.2 — List of Tasks on “Compile and Unit Test” JObccooviiiiiieiieiiiieceeee s 14
A.3 = View of the task @ditor. ... e 15
A.4 —Build Results.............. U ST UTR PR 16
A.5 — Sample output during a build runtimecccoc oo 16
A.6 — End-of-project BUild VIEW..........uveiii et 17
A.7 — Compietion of a Continua Clbuildccoocco e, 17
A.8 — Bamboo test results with a failed test................coiiiiiii 17
A.9 — Bamboo test results with the failed test fixedc....oociiii 18

Table of Figures

Figure 1 - Bamboo Plan [1] ...ttt

vi

Background

When creating a software product, several different stages and milestones are
achieved before the software is released to the public. These stages include planning,
implementing, and testing. When implementing a software product, code produced by a
software engineer needs to be verified for correctness and functionality. This is
commonly referred to as unit testing. “A unit test is a piece of code that invokes another
piece of code and checks the correctness of some assumptions afterward. If the
assumptions are wrong, the unit test has failed” (Osherove 4). These unit tests are
executed by a developer before their changes are put into production code, but for
every version of the software built before a public release, unit tests need to be run so
often that it becomes burdensome. Each test needs to be run for each build in order to
verify consistent quality of the software product. This is where a Continuous integration
(Cl) machine comes into the picture.

A ClI machine automates several of the stages that a developer would normally
take to perform all created unit tests, as well as extend the possibility of what resources
a developer has available. All of this happens on a Virtual Machine (VM). A VM is used
because a deveioper has higher control over the state of the Operating System. The
developer is able to control the software, settings, and system resources on the VM.,
This limits the variability of the environment that the Cl build will run in. An example of a
fully-functional Cl machine is where the machine pulls the source code from one or

more repositories, compiles and builds it, then runs unit tests on the built code. After the

unit tests have completed, the Cl machine generates a report of the test results,
showing where failures occurred, if they did occur at all. Cl machines are used on
products that go through several milestones and versions in order to check consistency
across the entire appiication.

Schweitzer Engineering Laboratories, Inc. (SEL) produces a product called
QuickSet, which allows power engineers to work directly with settings on devices within
a power substation. These devices include digital electric relays, metering devices,
security devices for the power grid, and communication devices that can group several
devices together. Within this QuickSet application is a plugin called Device Manager.
Device Manager is aptly named, because it extends the capabilities of QuickSet and
allows the user to manage the devices themselves instead of just their settings. This
includes but is not limited to the names and IDs on the devices, the connection paths
the devices take, and the versions of settings on the devices. It also manages any
scripts, passwords, or users that may interact with these devices. A project that worked
with Device Manager was desired for work on a senior capstone.

Deciding on a worthwhile project was difficult. There was an opportunity to
combine work for this project with an internship at SEL.. In this way, the project overlaps
both the academic and professional spheres, giving benefit to both. To work on the
software package that the team is developing would be too large of a project and
unfeasible because of the types of tasks that would likely be assigned in addition to this
project. On top of this, the time constraints placed on the project within the software

development cycle were a challenge. Each milestone and the work done on that

milestone would be too small and would require too short of a time frame for the
requirements of this project before moving to a new task.

The idea of moving existing Cl machine's functionality to work on Bamboo was
brought up. Bamboo is a Cl build machine tool produced by Atlassian, and it couples
with Atlassian’s other tools to make a combined single experience for the user. After
consideration, this project fulfilled the needs of a group of users, was wanted by those
users, and met the requirements of the project scope. The Cl machine capability that
the team was currently using was adequate, but lacked several features that had the
potential to save the team time and effort.

When work on Bamboo was initialized, the amount of people in the company that
were using it for their team was low. Since the Atlassian tools were new, most teams
that had migrated to using them were still learning how to use the error reporting and
repository management fools. Bamboo was largely pushed to the side as something to
focus on once everything else is complete. Because of this, there was not a lot of
internal documentation from other SEL employees that could be used to help with

understanding or implementation.

Planning

At the start of the project, the Device Manager team already had a Cl build
machine running and functional, using a service called Continua. This service had many
features that the team wanted and needed. What Continua did not have was a good tie-
in to other software systems and tools that the team used. The team had recently
transitioned to using the Atlassian suite of tools, which contained tools such as Jira,

Stash/Bitbucket, Confluence, and Bamboo. Jira is an issue tracking tool, where team

3

members are assigned tasks to do, and tasks are created that relate to one another,
leading to easier issue management. Stash is a tool that hosts repositories on a server.
Partway through the project, Atlassian changed the name of Stash to Bitbucket, and it
will be called that throughout the rest of this document. This repository also has pull
request features. This means that a user can make code changes then use a version
control system (like Git) to commit these changes, push them to a server, then “request”
a merge of the changes to the "main” branch upon approval of a set of reviewers.
Confluence is a knowledge base, which can take several different meanings depending
on what a team is using it for. Some teams store specifications there, others store how-
to documents, and others use it for project lifecycle tracking. Bamboo is Atlassian’s Cl
machine and build deployment tool. This allows Bamboo to run as a Ci machine (like
Continua) and also send projects out or on to their next stage in the development cycle.
While Continua was good, it was not great for meeting the needs of the team.
With unit tests running in Bamboo, a failed test could occur, and Bamboo could easily
create an issue in Jira, rather than having to manually type out the issue and ensure its
correctness. Bamboo does this work for the developer. Since the developer is not

spending time writing up issues, they can be actively solving the issue instead.

Execution

Bamboo uses five different categories of granularity within a Bamboo project.
There is the project itself, the plan, the stage, the job, and the task. The “project” is an
umbrella term, which is often used for teams to put several different Cl machine setups
underneath. For instance, the project was named “Device Manager CI” for this project.

Under this project may be several plans. Each plan is a specific build and test

4

environment for the software package. An example may be if a team wanted to test their
software on a Windows 10 platform and also a Linux Ubuntu platform, they may create

a plan for each and have them run simultaneously.

A plan consists of several subcategories (Figure 1): stages, jobs, and tasks.

Task)
Tasks execute sequentially within a Job. hd
Jobs execute in parallel within a Stage. Task

Stages execute sequentially within a Plan.

Figure 1 - Bamboo Plan (Bamboo)

When a plan has more than one stage, the stages execute sequentially, they
may not execute out of order. For this project, there is only one stage. A user may want
multiple Stages, to be used for building the software, testing the software, perhaps
installing the software, and running automated functional tests. Another possible Stage
is a deployment stage, where the software is pushed out to a public server for download
or to the next step in the software development lifecycle, depending on if the tests in

previous Stages passed or failed.

A job is executed at the same time as other jobs within the stage. Each Job could
also be what has been described above for potential various Stages. In this matter it is
up to the Bamboo plan creator to determine if the tasks that need to be done should be
done sequentially or in parallel. Also in the case of this work, there is only one Job. The
Job is titled "Compile and Run Unit Tests.” In the diagram there are actually two Jobs,
the other being "Run Automated Functional Tests.” When this project started it was the
intent to get Bamboo running then to add the functional test suite that tests the software
as a user would see it. However, due to the evolving needs of the team, that ended up
dropping off of the priority list, as the software projects that the team was working on
took a turn towards a different testing implementation. The Job that was created,
however, had several tasks in it.

A task is the smaliest level of project building, as it defines exactly what should
happen and when. Tasks run sequentially, so this is as close to programming as
possible for a Plan like this. A task for this project could be checking out the code from
Git repositories, building the code, or copying files to various locations on the VM.

The first step undertaken was analysis of the current Continua Cl machine. In
order to get a complete and accurate analysis, each task needed to be understood
enough to port over to Bamboo. Continua and Bamboo have similar functionalities and
abilities, but they do each task in slightly different ways. A task that was different was
how each handles file management. Continua has built-in procedures that move files,
while Bamboo relies on the user to create scripts that will do that when called. Most of

the buiit-in procedures of Continua do not match up well with built-in features of

Bamboo, so most of the tasks in Bamboo are called using a command line script on the
VM.

These differences were not realized at first. Initially, switching the tasks from one
Cl service to another seemed to be fairly straightforward. The tasks included checking
out the source code from all the repositories needed, compiling three different solution
files, running the unit tests, then parsing those unit tests. In Continua, all of these tasks
had built-in components, able to run each just by giving some parameters and locations
in the options for that task. For example, there was a compile using Visual Studio
command in Continua. A similar Visual studio compilation task was available in
Bamboo, but each time it would try to compile the code, the compilation would hang
indefinitely and the build would go on without ceasing until a user manually stopped the
build. Often this was found out when a build would be started right before clocking out
for the day, returning the next time to the office (typically about 20 hours later) and
finding the build still running, stuck on a compilation task, not advancing or giving any
sort of indication that an error had occurred. When this happened, the run would be
stopped, the log file downloaded, and it would be scoured to find what went wrong or
what happened.

What was found is that one of the services was run by a user, and since no user
had been assigned, it used the default value, which is where the locai system acts as
the user to the service. Because this is an SEL application in a test build, an SEL
username was required for that step, so the fact that no SEL user was introducing that
step was holding up the build process while it waited for an SEL account to allow

access to a certain feature of the program.

Once this was discovered, an attempt was undergone to remove restrictions on
the VM that the build was on. Running the Bamboo service uses the local system to run.
This was changed in order for the service to run off of a username that the Windows
operating system recognized. This was the username of an SEL employee. It worked,
and it continued to work until later in the process of creating the implementation of this
tool for use by the Device Manager team. Because this solution worked short-term, it
was kept and it allowed for progress on other parts of Bamboo. Later in the project, the
service was updated to use a username that was created specifically for the purpose of
use on ClI build machines.

After this setback, much of the task building and ordering was fairly
straightforward. As seen in Figure 2 (A.2), fifteen tasks were created. The first two tasks
were “Delete [Unit Test NLog Files]” and “Clear NUnit Cache.” These tasks were put in
place to clean up any potential residue left over from tests that ran before the current
build, in an attempt to get the VM to as clean of a state as possible, limiting outside
factors that could influence the test results. The next step found all the repositories that
Device Manager needed code from and checked out the specified branch that the code
was to run from. This task could be customized to fit each plan. For instance, if one plan
was to always test production code, it would stay on the Master branch. If a plan was to
test a certain step in the software development lifecycle, then it would be set to a task
branch or a project branch, all hosted in Bitbucket. This shows another useful tie-in to
the other Atlassian tools, for Bitbucket and Bamboo work seamlessly with one another

on tasks like this one.

After copying a DLL file to another location on the VM, the Job starts to compile
three different Visual Studio solution files. It compiles a common library that SEL uses, it
compiles the project itself, then it compiles a separate solution that includes the unit
tests for the project. To run a lot of the unit tests, a pseudo-database needs to be set
up, so the next task does just that. After copying some build files for artifact saving later,
Bamboo then starts running the unit tests. Since Device Manager is written in C#, there
is an open source unit test framework called NUnit that is also written in C#, so that
framework is used for writing and executing unit tests. Bamboo has an NUnit runner, but
as mentioned before, the configurations did not meet the needs of the team, so a
general command line script was used instead. After the tests ran to completion, there
needed to be a way for the tests to be validated and checked for passing or failing
indicators.

Out of the fifteen tasks, only two were not started using a command line script.
Parsing the NUnit results was one of them. The NUnit tests are parsed by this task and
displays within Bamboo to show what tests passed, what tests failed (if any), and shows
how many tests were skipped (if any). Skipped tests are skipped because of the C#
code in the test itself. Skipped tests are reported in the final output (Appendix A.8, A.9)
This task is where it all comes together and becomes a usable software tool, becoming
valuable to the team. Once this step is complete, some files are copied in order to be
used as artifacts, namely the Device Manager NUnit log files. Now that the Stage has
completed, the build completes, and the result is a pass or fail on the build, artifacts
from the build, and a clean VM. Once the build finishes, it reverts the VM to a clean

state, removing all SEL software to protect against potential influence of remnant code.

R e G e e s -

Conclusion

As the implementation on Bamboo was completed, several ideas and lessons
were learned. One lesson learned was how to analyze actions taken by people before
any involvement with a project to see what they meant by taking those actions. This was
shown in the ability to look at the way that Continua was set up, analyze what it meant,
and adapt the tasks to fit a Bamboo implementation of the same goals.

Porting the Continua Cl machine to a Bamboo implementation was a valuable
and important step in the team at SEL. By moving the build machine over from a good
service to a great service that also has tie-ins to other services the team is actively
using, the benefits are invaluable. To have a consistency between tools is desired, and
it helps that the GUI look and feel is the same throughout the tooling, making it simple
for a user to navigate between issues and builds, documentation and code repositories.
Throughout this project the ability to communicate effectively was necessary, and
throughout the experience more effective communication was learned.

A challenge experienced throughout the project was the lack of knowledge about
the system and what Bamboo could do without having to write the scripts myself.
Because each build took upwards of fifteen minutes, only a couple builds could be run a
day if there was to be time between builds to analyze the results and fix or add to what
was already there. Another challenge was the time commitment between working on
Bamboo and working on other tasks assigned for different projects. Because this project
was completed while at work, other tasks assigned that were not part of this project

needed to be completed at the same time. Those tasks were often maintenance tasks

10

where a small issue would be fixed, but there was also a large addition to the software
interface and user experience that needed to be done, and that often lasted for several
hours at a time. Most of the work on the Bamboo project was completed while taking
classes at school as well, so only part-time work during weekdays was available.
Overall, while project requirements change and timing does not always work to
previous plans, this project became functional and usable by the Device Manager team,

and the value of this Bamboo CI machine will only continue to grow as more is added.

11

Works Cited

Bamboo Plan Anatomy. Digital image. Atlassian. Atlassian, 2017. Web. 30 Mar. 2017.
<https://confluence.atlassian.com/bamboo/configuring-plans-289276853.html>.
Osherove, Roy. The art of unit testing: with examples in C#. Shelter Island, NY:

Manning, 2014. Print.

12

Appendix

A.1 —Bamboo Project View

Budl proects 7 OSA- Device Manager / Device Manager Cf

7~ Configuration - Device Manager C|

Continuous Bukd of Device Manager

* Slages & jobs 2

Compile Device Manager
and Run Unit Tests

1= Compde and Und Test
Run Automatic FT Tests
Automated FT
' Branches]

Plandetais Stages Repostones Triggers | Branches

Plan contents

E3Ch Slage within @ plan represents a siep dhin your busd po
more slages for vanaus IESEng jobs. fodsead Uy a stage fof de

Complte Device Manager and Run Unit Tasts

Compee and Uit Test

+ Add job

f. Run Automatic FT Tests Copy and Run FT avtonaton
| Astomarearr usabied

*+ Add job

13

L cleRojoRoloRoRGROR0)

Varabies = Mscelaneous - Audt iog

®

Run -

£ Ackons =

Create stage

es3. A 5taga may Contan one o Moré jobs which BAMINGG Can execute m paratiel For exampie, you might Nave a slage 1or Compaaton b, fotomed by one or
ment jobrs

o

Osadie « Delele

o

Enable Delete

A.2 — List of Tasks on “Compile and Unit Test” Job

& Script o
i Delete [Unit Test NLeg Files]

|
|
!
& Script o i
:
|
|

i Clear NUnitCache
;i Source Code Checkout o
i GitCheckout
i Script o |
£ Copy [SELCommunications. dii) j
i Seript @}
i Compile Common Core (SEL Storage) Solution \
- Script @!
it Compile Device Manager Solution \
1
i Script & I
i Compile Device Manager Unit Tesls \
i
i Script o
i Install Device Manager Database in Postgres |
i Script ol
i Copy (All Build Files to QuickSet Install Location] |
o Script @l
Copy [A Build Files to QuickSetInstall Location] |
|
© seript ol
£ Copy [All Build Files to QuickSetinstall Location] |
i Script @ |
© Run Device Manager Unit Tests |
£ NUnit Parser o '
! Parse NUnit Test Results |
i Script O
i Copy [Unit Test NLog Files) |
i Script o |
i Copy (DB Installer] |

14

A.3 — View of the task editor

- Script =
i Detele [Unit Test NLog Fites]

@ Script configuration

Task description

i Script
1 Clear HUnit Cache

Source Code Checkout G
Git Checkout

Script
Copy [SELCommunications di}

o Inline

© | Run Device Manager Unit Tesls |

£ Disable this task

Script location

B

7 Run as Powershell script

il © Indicates that scrptis a Powershell script
Compite Comman Core (SEL.Storage) Selution
Script body"
: Script 1 E2cho ott -
| Compile Device Hanager Solution 2 ==
3 echo set environment variables t
1 Script !:} 4 set RepoFolders=${bamboo.Workspace} |;
3 5 1%
Compile Device Manager Unit Test: . i
ki cd Manager Uni Tesha 6 1if exist "%RepoFolder¥\DeviceManager\Builds\Bin\Debug\DeviceManagarUnitTest . xml™ (E
Serpt 7 echo del "NRepoFolderX¥\DeviceManager\Builds\Bin\Debug\DeviceManagerUnitTest.xml™ !
i Ut {‘:q 8 del "%Repofolder®\DeviceHanager\Builds\Bin\Dabug\DeviceManagerUnitTest xnl” i 4
: Install Device Manager Dratabase in Postgres 9) 1%
10 tE.
. Scrpt o 11 echo Clear Bawboo Environment Variables !
i Copy (Al Build Fites to QuickSel Install Location] 12 for /¥ "usebackq tokens=1* delims=«" %%3 in ('set bamboo_*) do set X%a= |
13 3
. Script P 14 echo "C:\Program Files (x86)\Kunit 2.6.3\bin\nunit-conscle-x86.exe" mepoFolded\Deviceﬂanager\auilds\! E
: X "C:\P F 65 . -x86.exe” F D Builds\Conti
| Copy [All Bulld Files lo QuickSel Install Locaton] :: C:\Program Files (x86)\NUnit 2.6.3\bin\nunit-console-x86.exe” %RepoFolderX\DeviceManager\Builds\ | :
Script s I
P Q 18 if XERRORLEVELY GEQ © EXIT /B @ 4
sl i S :

1 Copy Al Build Files to QuickSet Install Location]

Script

Run

- NUnit Parser
© Parse NUnit Test Results

Seript

Copy fUnit Test NLog Files)

. Script e
Copy {08 Instalter]

Final tasks Are atways executed even if a previous task fais

Drag tasks here lo make them final

<y

o b

(Windows: .bat or ps1 file; Unix feinsh compatitle scriph)

Argument

Argument you want to pass lo the command Arguments with spaces {a them must be quoted

@ Enviconment variables

Extra endronmentvanables & g JAVA_OPTS="-Xnu256m -Xms128m". You can add muitiple paramelers separaled by 3 space

Working sub directory

Specily an allamative sud-girectory as werking directory for the task

Add task

15

A.4 — Build Results

@ #24 Rebuilt by Nathan Emerson 1 month ago
®#23 Rebuilt by Nathan Emerson 1 month ago
©@#22 Rebuilt by Nathan Emersen 1 month ago
@#21 Rebuilt by Nathan Emerson 1 month ago
@ #20 Rebuilt by Nathan Emerson 1 month ago
O #19 Rebuilt by Nathan Emerson 1 month ago
(OFit:] Rebuilt by Nathan Emerson 1 month ago
@#17 Rebuilt by Nathan Emerson 1 month ago
@6 Rebuilt by Nathan Emerson 1 month ago
@#15 Manual run by Nathan Emerson 1 month ago
®#14 Rebuilt by Nathan Emerson 1 month ago
®#13 Manual run by Mathan Emerson 1 month ago
®#12 Manual run by Nathan Emerson 1 month ago
®#11 Rebuilt by Nathan Emerson 2 months ago
@ #10 Rebuilt by Nathan Emerson 2 months ago
®#o Manual run by Nathan Emerson 2 months ago
®us Rebuiit by Nathan Emerson 2 months ago
@#7 Rebuilt by Nathan Emerson 2 months ago
@6 Manuat run by Nathan Emerson 2 months ago
45 Manual run by Nathan Emerson 2 months ago
®O# Manual run by Nathan Emerson 2 months ago
@#3 Manual run by Nathan Emerson 2 months ago
@) #2 Rebuilt by Nathan Emerson 2 months ago
@#1 Manual run by Nathan Emerson 2 months ago

A.5 —Sample output during a build runtime

133 Processing pages... Dosel

123 Bamaving ussesd Tassurcas... Done!
5.7 Generaning langusge tables... Goce!
16-091-3014 $5:45.29 Gamaraving untnezaller . Demal
JE-Ce-1213 LS

26-0s7-2014 G8I40:3% 1 pectice (1040 Bytari, 1387 imstructisas (§47S6 Bytesi, 303 seeiags (10140 bysas’, 1 laagusge cable (292 Byiasi.
16-Cex-3026 S€:45:73 Datablock corisiner vaved 163118 byzes (-0.3%)

15-008-3018 0648123

16-0c%-1014 26.45:3) Uning lib cesprassion

16-028-3018 £4: 48518

ik 3906 04:48:2% IXT hesdar size: WRERE 7 IMIA byres

236 0E:45:7% Inpcall code: 212360 / 213709 bres

s8:48:33 Zastall datas LBIG45T1 / TCREEISO Byzer
£6:46:9% Unimstall codeideza: 1967361 7 1700011 byzes

LE 045173 CIC 1RIDOIIY) : 47 4 byzes

86:48:2%

SE4S13% Toral size: 17019283 / 71701620 byzes 234N

o8
P16 06:45.1% 3 warairge:

45:3% amarall fusctiss TSteContales® not feferesced - zerelng code (17-3%) eut
24-0er-1016 06348333

16

¢ Qutpus: “C:\Bambos\uml-date\bulld-diriiGA-AgA-2081 waat
~0st-2036 C4:4S5:I3 Tnsradi: 3 pages (520 bytes), I secuichs (i Temsbredi (2336 byzesi. 5283 smsrrucvions (164831 Dyrest. 766 srraicas (46791 dyesi.
16-Ger-2918 £8: 45223 Tainstell: 3 pages 1130 Bytes),

14 Incguage tadle (314 Dytes)

6 minutes
56 seconds
7 minutes
& minutes
6 minutes
6 minutes
6 minutes
7 minutes
6 minutes
6 minutes
7 minutes
7 minutes
5 minutes
1 minute
1 minute
1 minute
1 minute
1230 minutes
2 minutes
1 minute
1 minute
1 minute
Unknown

16 minutes

Downioad of View (paral)

A.6 — End-of-project Build View

@raa Manual run by Nathan Emerson
® g3 Rebuilt by Nathan Emerson
@ns2 Manual run by Nathan Emerson
@us1 Manual run by Nathan Emerson
@80 Rebuit by Nathan Emerson
[oLIL] Manual run by Nathan Emerson
Mg Manual run by Nathan Emerson
e Scheduled

@#ure Scheduled

@urs Scheduted

A.7 — Completion of a Continua Cl build

Build - 1.0.0.99

LACTUN 100 UNTTESTS(696) ANTHACTS[S) CHANGES(3N) RIPORIS(0) BSUIS[) TIMEUME(115) COMMENTS[0)

2 days ago 16 minutes 62865 passed

2 days ago 16 minutes 3 of 6265 faled
Unknown Testless bulid

3 days ago 16 minutes 6265 passed

3 days ago 16 minutes 6265 passed

3 days ago 16 minutes 6265 passed

3 days ago < 1 second Testless build

3 days ago 15 minutes 1 of 62665 fated

4 days ago 15 minutes 6265 passed

5 days ago 15 minutes 6265 passed

Build Completed

Bud Dt

Stated By: ey

Started. Vemerdwy m IIPM

Qe Do 628 mmeacans

Beild Durstbon. 18 mirutey.

Siianed Fessertny s TALPAL Budd Tags [AJd/TH Tags]
Version 10098 e

A.8 —Bamboo test results with a failed test

Test results

i= 6,295 tests in lotal @ 1 testrailed + 1 failure is new (D 71 tests were quarantined / skipped

New test faitures 1

Test
(@ RduFieinfoTests FinalzeFleRecovery_FileNotRecovered_UsinghewFile

TearDoun : Syste=.IO. icn : The di

is not expry.

Skipped tests 71

Test

(© DeviceDispatchBuliderTests Shutdown_DeadChild_HardShutdowninvoked (©

© imporlExportulity Test ExportObjects ToFile_ExportWithCustomPassword_ExporiSuccesstul (©

© ImportExportUtiiityTest ExporiObjectsToFiie_ExportOptionalDatawithLargeObjectsWithCustomPassword_ExportSuccessiul

@ ImportExportUtilityTest ExporiObjecisToFile_ExportintegratedSettingsOptionalDatavithBlankPassword_ExportSuccessful @

1%

Unit Tews Iview AN]

6525000 0 O

2 Planing [Pin Buils]
This buics 15 not Peed.

(© 14 minutes taken in total

Failing since

#112 (Scheduled)
#112 (Scheduled)

#112 (Scheduled)

A.9 — Bamboo test results with the failed test fixed

Test results
i= 6,349 tesls in total * 1 test was fied (D 71 tests were quarantined / skipped (© 9 minutes taken in total

Fixed tests 1

Test

(@ RdbFilelnfoTests FinalizeFieRecovery_FileNotRecovered_UsinghewFie (D

Skipped tests 71

Test
@ DeviceDispatchBuilderTesls Shutdown_DeadChild_HardShutdowninvoked (&
[S)] ImportExportUtility Test ExportObjectsToFile_ExpontWithCustomPassword_ExpertSuccessful (®
© ImportExportUlitityTest ExportObjects Tof ile_ExportOptionalDataWithL argeObjectsWithCustomPassword_ExportSuccessiul (D

© importExportUliityTest ExportObjectsToFiie_ExportintegratedSettingsOptionalDatawithBlankPassword_ExportSuccessful (®

18

Failing since

#400 (Scheduled)

Failing since

#112 (Scheduled)

#112 (Scheduled)

#112 (Scheduled)

