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Abstract

During the 17th century prominent mathematicians became fascinated

with the cycloid curve. It was their favorite example to use in the develop-

ment of their new ideas and theorems. They would use it to help them in

their new discoveries because the unique properties aligned with the curve.

Since it was used by most significant mathematicians of the 17th century, it

is important to examine the history of it during this time period. This paper

aims to examine mathematicians work with the curve, find similar methods

used among mathematicians, and find how the cycloid curve aided the devel-

opment of calculus.

In order to answer this question, proofs relating to finding general meth-

ods of tangents, areas, arc length to the curve and the brachistochrone prob-

lem were examined and analyzed. The methods used by mathematicians

will be explained, compared, and contrasted. The relationship to the devel-

opment of calculus will also be considered and explained. The goal of this

paper is to illustrate the importance of the curve and why it must be studied

will be demonstrated in this paper.
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1 Introduction

Mathematics during the 17th century was a period of heightened creativity and in-

novation, developing into one of the greatest centuries in the history of mathemat-

ics. New ideas and techniques were being developed rapidly that expanded many

fields of mathematics and even created new ones. One major topic of interest was

the study of the cycloid curve. This is the curve that is generated by a point on

the circumference of a circle as it rolls along a straight line.

Figure 1: Cycloid

While the cycloid was discovered centuries earlier, it wasn’t until the 17th century

that it became a new and powerful tool for the study of curves. The cycloid was

utilized to find new methods of tangents to curves, areas under curves, and much

more. While its study contributed to many aspects of mathematics, an important

one to focus on is its contribution to calculus. Calculus at this time was in the be-

ginning stages, and the study of the cycloid helped aid mathematicians in their

development of the subject. With such unique properties, the cycloid contributed
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to the discovery of new ideas in mathematics during the 17th century. This paper

examines relationships among general methods for tangents, areas, and lengths of

the curve and solutions to the Brachistochrone problem along with connections to

the development of calculus.

2 Tangents

One considerable development aided by the cycloid curve was the study of tan-

gents. 17th century mathematics involved an increasing interest in finding the gen-

eral method of tangents because of recent fascination with dynamics and intellec-

tual interests in the study of curves [5]. This heightened interest brought most, if

not all, mathematicians of the time period to be involved with finding the general

method of tangents. The cycloid curve is crucial in this development because the

unique properties provided substantial evidence with the additional case to sup-

port each mathematician’s methodology. The two leading and successful pioneers

of this field of tangents during the 17th century were Gilles de Roberval and Pierre

de Fermat.

2.1 Roberval

Gilles de Roberval (1602-1675) produced his first, now discarded, general method

of tangents in 1636 and released his second method that proved to be fundamen-

tal in the modern theory of tangents by the early autumn of 1638. His mechanical

method consisted of composition of motions, being that he considered every curve
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as a path of a moving point.

Theorem 2.1: The net force of a point E on the cycloid is the tangent to the

curve at that point E.

Figure 2: Roberal’s Tangent

Proof: Begin with a point E on the cycloid AED and construct the generating

circle NEO passing through this point. By definition of a cycloid, the curve is

traced out by the point E, and at the same time the vertical diameter of the gen-

erating circle NO is moving to the right along the base of the cycloid. Based off

these two statements, the point has both a circular and rectilinear motion. Cir-

cular motion is defined as the movement of an object as it rotates on the circum-

ference of a circle and rectilinear motion is defined as the movement of an object

along a straight line.

According to uniform circular motion, the circular motion of the point is always

in the direction of the tangent of the circle, seen here as EP . Simultaneously the
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rectilinear motion EF is in the direction of the line perpendicular to the vertical

diameter of the circle. Being that both these motions are uniform and simultane-

ous, the ratio of the circumference of the generating circle over the length of the

baseline of cycloid is equal to the circular motion over the rectilinear motion.

the circumference of NEO

the length of AC
=
EP

EF

Since the generating circle makes one full rotation to form half the cycloid, the cir-

cumference of the generating circle must equal the length of the baseline. There-

fore the circular motion must equal the rectilinear motion. By the law of parallelo-

gram forces, the diagonal between the motions is the net force of the point on the

curve and therefore must be the tangent of the cycloid at that point.

2.2 Fermat

Pierre de Fermat (1607-1665) developed his general method of tangents during the

1630’s. Unlike Roberval, his analytical method utilized limits in order to bring two

points into coincidence. While Fermat didn’t understand the idea of limits the way

they are used today, his use of this method demonstrates the imminent arrival of

calculus during the 17th century.

Theorem 2.2: The parallel line to the base of the cycloid consisting of point R

cuts the generating circle at the circumference and on the diameter. These two

points and the highest point on the circle form a right triangle. The hypotenuse

of the triangle similar to this consisting of point R and the point intersecting the
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diameter is the tangent to the cycloid at point R.

Figure 3: Fermat’s Tangent

Proof: Construct the cycloid HRC and generating circle COMF . Draw RMD

perpendicular to CF , the segment MC, and RB parallel to MC. Once completing

the beginning construction of the proof, Fermat’s analysis begins by assuming the

line RB is the tangent to the cycloid at R. RMD is perpendicular to FC, which

cuts the generating circle at point M . Construct MA tangent to the generating

circle at M and EOV N parallel to RD.

A brief overview of Fermat’s method involves the use of the property of the cy-
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cloid, similar triangles, identities, and simple algebra. His logic relies on the as-

sumption that DE approaches zero as a limit, which implies that the points N

and R approach coincidence. All this leads to Fermat proving triangles MDC and

RDB are similar, which leads to RB being the tangent and parallel to MC.

For further details, the property of the cycloid gives NO = arc(OC). The following

substitutions are used for simplicity:

DB = a; DA = b; MA = d; MD = r;

RD = z; DE = e; arc(CM) = n; EB = a− e.

Starting with a
a−e , multiply by z and move a to the bottom to get a

a−e = z
za−ze

a

.

Then using similar triangles and assuming that N is on RB, DB
EB

= RD
NE

. Since DB
EB

=

a
a−e from the substitutions above, that means the two functions can be set equal to

get NE = za−ze
a

. Now it is known that NE = NO + OE, and it is found using

the property of the cycloid: the arc of the generating circle, beginning at the top of

the circle, is equal to the line segment from the point on the bottom of the arc to a

point on the cycloid parallel to the bottom of the cycloid, to get NE = arc(OC) +

OE = arc(MC) − arc(MO) + OE. Using substitution again with the equations

involving NE gives arc(MC)− arc(MO) +OE = za−ze
a

.

Using the same method as above and assuming O is on MV, V E = OE and MV =

arc(MO). Then similar triangles gives MD
V E

= DA
EA

and by substitution, MD
V E

= b
b−e .

Multiplying by r and moving b to the bottom gives MD
V E

= r
rb−re

b

. Since it is known

that MD = r, it follows that V E = rb−re
b

. It is also known using similar triangles
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and substitution that DA
EA

= MA
MV

= b
e
, and then multiplying top and bottom by d

gives DA
EA

= d
de
b

. Then MV = de
b

by setting the two equations together.

Now substituting arc(MO) for MV and OE for V E, arc(MC)− arc(MO) +OE =

arc(MC)−MV +V E. Using all the equations defined above, it follows that za−ze
a

=

n − de
b

+ rb−re
b

. Applying substitution and arithmetic, the equation simplifies to

MD+MA
DA

= RD
DB

. Using the angle bisector theorem and the fact that the chord MC

bisects the angle DMA, MD
MA

= DC
CA

. This simplifies down to MD+MA
DA

= MD
DC

. And

using this and MD+MA
DA

= RD
DB

gives MD
DC

= RD
DB

. This proves that triangles MDC

and RDB are similar, and therefore the tangent line RB is parallel to MC.

2.3 Descartes

René Descartes (1596-1650) also computed tangents, publishing his general method

in 1637. His method was contingent on whether or not he was able to write the

equation of the curve. For the cycloidal curves, Descartes would apply a mechani-

cal method relying on the instantaneous center of rotation.

Theorem 2.3: The parallel line to the base of the cycloid consisting of point B

cuts the cycloid at the circumference. There is a segment with point B parallel to

the segment consisting of the point on the circumference and the lowest point on

the cycloid. The line perpendicular to this segment at point B is the tangent to

the cycloid.
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Figure 4: Descartes’ Tangent

Proof: Let the cycloid ABC be given along with its generating circle CND. Let

B be any point on the cycloid and construct BN parallel to the base AD, cutting

CND at N . Construct as well ND, BO parallel to ND, and BL perpendicular to

BO. Let the generating circle be a polygon with an infinite number of sides, in ref-

erence to Figure 5. The tangent at point B will be the line perpendicular to B and

the point in which the generating circle touches the base of the cycloid, in this case

D. Since it is known that BN is parallel to AD, ND must be the perpendicular

line due to the fact that N will coincide with B. Hence BL is the tangent to the

cycloid at point B.
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Figure 5: Polygon Rotating on a Straight Line

2.4 Torrcelli

Evangelista Torricelli (1608-1647) was one of the last to construct the tangent to

the cycloid in 1644. His method, similar to Roberval, consisted of composition

of motion and instantaneous center of rotation. It is unclear on whether this was

his original idea, or it came from Roberval since they were in contact through let-

ters around this time period [5]. Either way, Torricelli was unable to apply this

method to finding the tangent to the cycloid until his friend, Viviani, showed him

how to do it. Torricelli did have additional methods for finding the tangents that

are unique.

2.5 Results

The general method for computing the tangent to the cycloid described can be

separated into two groups: mechanical and analytic. Mathematicians who provided
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mechanical methods include Roberval and Torricelli. All three of these methods fo-

cused on viewing the point on a curve as a composition of motion. Both Roberval

and Torricelli utilized instantaneous center of rotation, but this similarity may be

influenced by the circumstance that they were in contact with one another while

the methods were being developed. The mathematicians that provided the ana-

lytic methods were Fermat and Descartes. They both brought into coincidence two

line segments and utilized a method of limits. Though calculus was not fully devel-

oped during the period when these methods were produced, it is evident that ideas

around the subject were being considered. These proofs for calculating the tangent

to cycloid curve helped aid in the development of calculus and related concepts.

3 Quadrature

Developing a general method to determine the area under the curve was also as-

sisted by the study of the cycloid curve. The problem of finding the quadrature of

the cycloidal arch has a long history, beginning with Galileo Galilei (1564-1642).

In 1599, to determine the area under the curve, Galileo cut out metal in the shape

of the cycloid and the generating circle, and then he weighed the two to discover

the area of the cycloid is three times the area of the generating circle [3]. While

his discovery was correct, he quickly discarded it believing the answer to be only

an approximation. Roberval and Torricelli later proved mathematically that the

quadrature of the cycloid curve is indeed three times the area of the generating cir-

cle.
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3.1 Roberval

Gilles de Roberval not only was an early pioneer to the field of tangents, but he

also produced one of the earliest quadrature of the cycloid in 1634 which was not

published until 1693. His method relied on the companion curve to the cycloid

- the sine curve - and Cavalieri’s theorem, which states any two figures with the

same height and equal width at every height have the same area.

Theorem 3.1: The area under the cycloid is three times the area of the generat-

ing circle.

Figure 6: Roberval’s Quadrature
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Proof: Begin by letting OABP be the area under half the cycloid curve with gen-

erating circle of diameter OC and center D. Let P be any point on the cycloid

and construct PQ equal to DF . To establish the companion curve, take the lo-

cus of points traced by Q as D moves along the diameter of the generating circle.

The parametric equations of the companion curve are found to be x = at and

y = a(1 − cos(t)). Solving for t in the first equation and plugging the result into

the second gives y = a(1 + sin(x
a
− π

2
)). It is found that the curve, OQB, is a sine

curve with a being equal to the radius of the generating circle.

It is shown using Cavalieri’s theorem that the curve OQB divides the rectangle

OABC into two equal parts. It is also known that the base of the rectangle is

equal to the semi circumference of the generating circle by construction and the

height is equal to the diameter. Therefore the area of the rectangle is twice that of

the generating circle, and the area of OAQB is equal to the area of the generating

circle. By construction, PQ and DF are equal lengths as DQ moves along the di-

ameter. Hence the widths of the semi-circle OFC and the area between the cycloid

OPB and the curve OQB are equal. And since their heights are equal as well, the

area of these two segments are the same. So the area under the half arch of the cy-

cloid is one and a half times the area of the generating circle, and the area of the

cycloid is three times the area of the generating circle.

3.2 Torricelli

Another successful method of the quadrature of the cycloid curve was done by

Evangelista Torricelli, published in 1644. Roberval’s method utilized Cavalieri’s
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theorem, which is considered to be an implementation of the method of indivisi-

bles. Torricelli had a similar method using indivisibles.

Theorem 3.2: The area under the cycloid is three times the area of the generat-

ing circle.

Figure 7: Torricelli’s Quadrature
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Proof: Let the cycloid curve ABC be given with the generating circle CDEF

and base AF . Assume that the area of the cycloid is three times the area of the

generating circle, or one and a half times the area of the triangle ACF . To prove

this, take two points, H and I, on the diameter of the generating circle equidistant

from the center G. Construct the segments HB, IL, and CM parallel to the base

FA. Then construct semicircles OBP and MLN of same size as CDEF passing

through the points B and L and tangent to the base FA at points P and N .

Since points H and I are equidistant from the center, Euclid’s proposition 3.14

states HD = IE. And since all semicircles constructed are of equal size to the gen-

erating circle, since segments IE and QL are on the same line, and since segments

HD and XB are on the same line, segments HD = IE = XB = QL. By con-

struction of points H and I and the property of the cycloid, arc(OB) = arc(LN).

It is also known by construction that CH = IF and segment HRD is parallel to

segment IUL, and since points R and U are on the same line segment AC, CR =

UA. By definition of the cycloid, arc(MLN) = AF . Also using the definition of

the cycloid, arc(LN) = AN . Using the past two statements, arc(LM) = NF . This

same argument gives arc(BP ) = AP and arc(BO) = PF .

It has been previously stated that arc(BO) = arc(LN), arc(LN) = AN , and

arc(BO) = PF , so they are all equal to each other. The same method to show

that CR = UA is used to show that AT = SC, but this time using the fact that

segments OP and MN are parallel. Since CR = UA, UT = SR. It is known that

the two triangles UTQ and RSX have two of the same angles; ∠UQT = ∠RXS =

90◦ by construction and ∠TUQ = ∠SRX by the alternate angles theorem, there-
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fore the two triangles UTQ and RSX are similar. This means that UQ = XR.

Using this previous statement that UQ = XR = LU , BR = BX + XR, and the

fact that BX = LQ by construction, then LU + BR = LQ + BX. And since

LQ = DH and BX = EI by construction, LU + BR = DH + EI. This state-

ment will be true for all constructions, as long as H and I are equidistant from the

center. Therefore all lines constructed on figure ALBCA will be equal to all lines

constructed on the semicircle CDEF . This means the area of the figure ALBCA

is equal to the area of the semicircle CDEF .

Since side AF of triangle ACF is equal to the circumference of semicircle CDEF

by construction and side CF is equal to twice the radius of the semicircle, the area

of triangle ACF is twice the area of semicircle CDEF by Archimedes property

1. It follows that the area of triangle ACF is equal to the area of the whole cir-

cle of diameter CF . Thus the area of the cycloid curve is equal to one and a half

times the area of the triangle ACF and three times the area of the generating cir-

cle CDEF .

3.3 Results

Roberval and Torricelli proved to have similar methods in their quadrature of the

cycloid because they both utilized the method of indivisibles. It is seen clearly in

Torricelli’s method as well as in Roberval’s is use of Cavalieri’s Theorem, which is

thought to be a modern implementation of the method of indivisibles. Cavalieri

first used this method of finding areas under curves in 1629 in his submission of his

notes on the theory of indivisibles. This new method, and the advances to follow,
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“exerted an enormous influence upon the subject of finding the areas under curves,

hence on the development of the calculus” [6].

4 Rectification

Another sequence of mathematical work pertaining to the cycloid came from Christo-

pher Wren (1632-1723). While he is known mostly for his architectural work, he

was a talented mathematician. Newton himself “paid Wren the compliment of

ranking him with John Wallis and Christiaan Huygens as a leading geometer of

his day” [10]. Wren’s proof on the rectification, determining the length of the curve

by finding a straight line of equal length, of the cycloid brought him this fame and

acknowledgment throughout Europe. Before the 1650’s the problem of rectification

was thought to be unsolvable, even to Descartes, but Wren correctly found it to be

exactly eight times the radius of the generating circle [10]. Unfortunately Wren did

not publish his mathematics. However we find information in John Wallis’ (1616-

1703) De Cycloide. In this book Wallis provides a unified published work of Wren’s

solutions with the cycloid curve, including his rectification of the curve produced

in 1658.

4.1 Wren

In order to formulate a proof for the rectification of the cycloid, Wren begins by

laying a foundation of problems and lemmas to aid in the proof.

Problem 4.1: Finding the relationship between the cycloidal arc and the internal

19



and external line segments.
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Figure 8: Wren’s Problem 1

Proof: Begin with the circle AoD with diameter AD and center C. Construct the

tangent V D at point D and draw V o intersecting V in such a way that V o and Do

make a right angle. Draw the tangent oT at point o and construct triangle oCD.

Since segments oC = CD by construction, ∠CoD = ∠CDo. And by construction

of the tangent line, ∠ToC and ∠TDC are right angles. Because ∠ToC = ∠ToD +

∠CoD and ∠TDC = ∠TDo + ∠CDo, ∠ToD = ∠TDo. It is also known that

∠ToV + ∠ToD = 90◦ by construction and ∠TV o + ∠TDo = 90◦ since the sum

of all angles is 180◦, therefore ∠TV o = ∠ToV . And since they are equal, segments

V T = oT . Since the segment V TD = V T + TD = oT + TD, and since segments

oT + TD > arc(oPD), then V D > arc(oPD).
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Let ω be any point on the circle and construct Dω and Dν in such a way that

they form a right angle. Let ωρ be tangent at ω and construct urpe parallel to V D

and νρπε parallel to V D. Also construct ρo and pm such that they meet at right

angles and construct ρω and πµ such that they meet at right angles.

∠opu and ∠ωπν are either acute or obtuse. Let ∠ωπν be obtuse. Construct Cω

and CD to form triangle CωD. Using a similar argument as before, segments Cω =

CD and ∠CωD = ∠CDω. Therefore ∠ρωD = ∠V Dω since ρω and V D are tan-

gents. And since νε is parallel to V D by construction, ∠ρωε = ∠ωερ, so ρωε is

isosceles. Again using a similar argument as before, segments νρ = ρω. Using Eu-

clid’s common notion 5, which states the whole is greater than the part, ωµ < νρ

and νρ < νπ, so ωµ < νπ.

Construct ωπ. Since ωπν is obtuse based on ωπµ being a right angle, ωµ < νρ <

νπ. It is known that ωµ + µπ > arc(ωπ), ρν + ρπ = νπ, and νπ > arc(ωπ),

since ρν > ωµ and ρπ > µπ. Let ∠upo be acute and consider triangle omp. Since

∠opm is a right angle by construction, ∠omp+∠mop = 90◦. Next consider triangle

rpm. ∠rpm + ∠upo = 90◦ since they add up to opm which is a right angle by

construction. Also ∠upo > ∠ueo and ∠mop < ∠moD by Euclid’s common notion

5. The complement of ∠upo is less than the complement of ∠mop since ∠upo >

∠mop. Then rm < rp since ∠rpm < ∠rmp. It is known that ur = ro, thus up >

om, om > arc(op), and then up > arc(op). Since ∠roe = ∠reo, ∠poe < ∠peo and

thus pe < po. And since it is known that po < arc(po), pe < arc(po). This can be

shown similarly concerning πε. This problem has shown that an internal segment,

pe, is less than the arc length, po, and the external segment, up, is greater than the
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arc length, po.

Problem 4.2: Finding the tangent to the cycloid at a point t.

Figure 9: Wren’s Tangent

Proof: Construct the semi cycloid sad and its generating circle aod. Draw to par-

allel to the base and through point o on the generating circle and construct aou

and xty parallel to aou.

Say that xy is the tangent at point t. If it is not the tangent, the line must fall

inside the curve, either towards the base or towards the vertex. Let the line fall

towards the base and let there be some point x inside the curve. It is known that

lines parallel to the base that are bounded between the cycloid and generating cir-

cle are equal to the arcs of the generating circle cut off from the vertex. Therefore

gp = arc(pos) and to = arc(oa), so to + arc(po) = gp. Then xu = to by parallel

lines, up > arc(op) by Problem 1, and xup > to + arc(op) by common notion 5.
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Since px > pg by the previous statement, x lies outside the curve. But x cannot be

both inside and outside the curve, therefore it is not inside the curve.

Let the line fall inside the curve towards the vertex and let there be some point

y on ty inside the curve. Draw yp′e parallel to the base and let it cut the cycloid

at point h. It is known that ye = to by parallel lines and hp′ + arc(p′o) = to by

definition of a cycloid. And since p′e < arc(p′o) by Problem 1, hp′e < hp′+ arc(p′o)

or hp′e < to and ey > eh. So y is both inside and outside the curve, therefore y is

not inside the curve. No point on xy lies inside the curve, therefore it does not cut

the curve at point t and ty is tangent to the cycloid at any given point t.

Problem 4.3: Finding the ratio of subtenses in a given continuous ratio of semi-

circles.
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Figure 10: Wren’s Subtenses

Proof: Construct the semicircle AD′D and another semicircle AM”M ′ tangent to

AD′D at point A. Construct subtenses, the chords of arcs, such that AD is made

equal to AM and join MM and DD everywhere.

Consider triangles AM ′′M ′ and AD′D. ∠M ′′AM ′ = ∠D′AD by common notion

4, which states ”things which coincide with one another equal one another,” and

∠AM ′′M ′ = ∠AD′D by corresponding angles theorem, since M’M” and DD’ are

parallel by construction. ∠AM ′M ′′ = ∠ADD′ by corresponding angles theorem.

Therefore triangles AM ′M ′′ and ADD′ are similar and they have the ratio AM ′

AD
=

AM ′′

AD′
. This process can be repeated for all triangles with sides being subtenses, so
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the ratio AM to AD is continuous throughout the subtenses.

Lemma 4.1: The subtenses in a given ratio can be divided to create equal seg-

ments across each subtense.

Figure 11: Wren’s Lemma

Proof: Construct three circles tangent to each other at point A whose diameters

AE, AF , and AG are in continuous proportion. Let line AMDC cut the circles

and line Aµδκ cut the circles such that Aδ may be made to fit in the middle circle

and AM = Aδ. Construct δNO perpendicular to the diameter and Dβ parallel to

δN and construct κC, µM and ME.
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Since AµME is a quadrilateral inscribed in a circle, the external ∠δµM must be

equal to the opposite internal ∠AEM . It is knows that ∠NAO = ∠EAM by com-

mon notion 4 and ∠AON = ∠AME since ∠AON = 90◦ by construction and

∠AME = 90◦ by Thales’s theorem, which states the diameter of a circle always

subtends a right angle to any point on the circumference of the circle. Therefore

by AA similarity theorem triangles AON and AME are similar and ∠ANO =

∠AEM . ∠ANO = ∠δNM by vertical angle theorem, ∠δµM = ∠δNM by pre-

vious statements, and ∠AµM = ∠ANδ because angles on a straight line add

up to 180◦. ∠µAM = ∠NAδ by common notion 4 and AM = Aδ by construc-

tion. Therefore by AAS congruence, triangles AδN and AµM are equal. Since

βD is parallel to δN and κC is parallel to µM , triangles AβD and ACκ are equal.

Therefore AN = Aµ, AM = Aδ, AD = Aκ, and AC = Aβ. AM = AN + NM ,

which implies NM = AM − AN , so NM = Aδ − Aµ, and NM = µδ. This

same process shows that MD = δκ and DC = κβ. Therefore the portions of these

subtenses are equal.

Problem 4.4: The diameters of multiple circles tangent to one another are in con-

tinuous proportion with one another.
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Figure 12: Wren’s Problem 4

Proof: Construct three circles all tangent to each other at point A and let AD

be the diameter of the middle circle. Construct DZ such that AD and DZ make

a right angle and DZ is equal to the difference of the other two circle’s diameter,

MC. Find the midpoint of DZ, S, and construct circle Dµκ with center S and

radius SD. Construct line AµSκ through S. Let AM = Aµ and AC = Aκ. AD

is tangent to the circle Dµκ by construction. By Steiner’s theorem, AD
Aκ

= Aµ
AD

or

(AD)(AD) = (Aµ)(Aκ).Therefore the square AD is equal to the rectangle µAκ. In

substitution, (AD)(AD) = (AM)(AC), so AD
AC

= AM
AD

and AM , AD, and AC are in

continuous proportion.
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Lemma 4.2: The sum of the differences of infinitely decreasing magnitudes on a

single segment will be equal to the greatest magnitude.

Figure 13: Wren’s Magnitudes

Proof: Let the magnitudes aZ, bβ, cν, dδ, etc. continue infinitely. Let all the dif-

ferences be greater than aZ such that aZ = a, aβ = b, aγ = c, aδ = d, etc. and

aZ − aβ = Zβ, aβ − aγ = βγ, aγ − aδ = γδ, etc. They are all parts of aZ, there-

fore the differences can’t be greater than aZ. Let the differences be smaller than

aZ, and let them be equal to Zδ. But it is known that d = aδ and aε < d. Since

another difference has been added, Zε is equal to the sum of all the differences. Zδ

must equal Zε but Zδ < Zε, so the differences are not smaller than aZ. Therefore
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aZ is equal to the sum of all the differences as the magnitudes decrease infinitely.

Lemma 4.3: The difference of two magnitudes is equal to the difference between

the sum and twice either one.

Proof: Let a and b be two magnitudes and let a+ b be the sum of the magnitudes.

Take away twice b from the sum to get (a + b) − 2b. Simplifying this gives a − b,

which is the difference of the magnitudes. Repeat this for twice a to get (a + b) −

2a = −(a− b).

Problem 4.5: The difference of the sum of all the sides of an inscribed polygon

and the sum of the sides of a circumscribed polygon is equal to a given magnitude.
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Figure 14: Wren’s Serrated Polygons

Proof: Construct the semicircle ADD with diameter AD, and let the given mag-

nitude be X. Also construct semicircles AM ′M ′′ and ACC such that AD is the

average of AM ′ and AC and AM ′ is the smallest diameter. Also let the contin-

uous proportions AM ′, AD, and AC be constructed such that the differences of

extremes, M ′C, is equal to the given magnitude X. Construct the subtenses AD

in such a way that they be placed everywhere such that the ratio of AD to AM

to AC is continued infinitely. Once the subtenses have been constructed, draw the

parallel segments NDB through each D to the next subtense, such that N pre-

cedes the subtense of D and B follows it and NDB is perpendicular to the diam-
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eter AD. Based on this construction, a serrated polygon has been inserted into

the semicircle ADD and another has been put around the semicircle. A serrated

polygon is “a figure which alternates in turn from sides parallel to themselves to

sides crosswise with respect to themselves. However, only non-parallel sides may

be plainly called sides” (Wallis). Construct the semicircles with diameters AM ′

and AC tangent at A, and let them intersect the subtenses everywhere at M and

C respectively.

Based on construction, subtenses AD are places everywhere in the given ratio

AD to AM ′. From Problem 3, it can be shown that the preceding subtense AM ′

is equal to the following one AD′, continued infinitely. Then by Lemma 1, it is

found that the preceding subtense M ′N ′ is equal to the following D′M ′′ every-

where infinitely. Using this statement it is clear to see that the difference of DM ′

and M ′N ′ on the same subtense is equal to the difference of DM ′ and D′M ′′ also

on the same subtense everywhere. Using Lemma 2, it is clear to see that the sub-

tenses DM are decreasing infinitely, so the sum of their differences are equal to the

maximum DM . It has been said before that the differences of lines DM and MN

are equal to the differences of DM ′ and D′M ′′, and so on, so the sum of all the

differences of lines DM −MN is also equal to the maximum DM . By Lemma 3,

DM ′−M ′N ′ = 2DM ′−DN ′. And the sum of all lines DM is the same as the sum

of all differences AD, so they are both equal to the maximum AD. Using Lemma 3

again, the sum of the difference of DM and MN is equal to twice the sum of DM

minus the sum of DN , which thus is equal to max DM from a previous statement.

And since the sides of the polygon are DN , the sides of the inserted polygon fall
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short of double the diameter AD by DM ′.

Using the same logic since AM ′, AD, and AC are in continuous proportion, the

preceding subtense CD is equal to the following subtense B′C ′ infinitely. And us-

ing the same argument as above, it is shown that twice the sum of lines BC minus

the sum of sides BD is equal to the maximum B′C ′. So all the sides of the cir-

cumscribed polygon (BD) falls short of double the diameter AC by B′C ′. And by

Lemma 1 it is known that AB′ = AC and from above B′C ′ = CD, therefore all

the sides of the circumscribed polygon surpass double the diameter by an excess of

DC.

Since the inscribed polygon falls short of double the diameter AD by DM ′ and the

circumscribed polygon surpassed double the diameter by DC, the difference of the

two is equal to CM ′. This is put equal to the magnitude X, and the problem has

been proven.

Lemma 4.4: Relates the length of arcs on the cycloid to a segment of the tangent

of the cycloid.
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Figure 15: Wren’s Lemma

Proof: Let O be a point on the cycloid SPOAD and construct its generating cir-

cle. Construct the tangent OV drawn towards the base, and also construct NOB

and V PC parallel to the base and let the lines cut the generator at B and C. Con-

struct the segments AB and AC, and construct OE parallel to AC and construct

PTN parallel to OE and the segment PD.

∠PCA is obtuse by construction, so ∠PEO is obtuse since AC and OE are paral-

lel. EO < PO by definition of triangles since ∠PEO is the largest angle. EO <

arc(PO) by definition of chord length since PO < arc(PO). PN is tangent to the

cycloid at P since it is parallel to AC. And since it is parallel and ∠PCA is ob-

tuse, ∠V PT must be obtuse. TP < TV by definition of an obtuse triangle. It is

known that TP + OT < TV + OT or OTV > OT + TP . Also, OTV > arc(OP )

since OT + TP > arc(OP ) by definition of arc length. So therefore OV > arc(OP )
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and OE < arc(OP ).

Lemma 4.4: The arc length of the cycloid is four times the diameter of the gener-

ating circle.

Figure 16: Wren’s Rectification

Proof: Construct the semi cycloid ooA and semi generating circle AD′D with base

oD and diameter AD. Let twice AD be called X. Construct two more semicir-

cles with AD′D as the middle circle and the ratio of the diameters being constant.

Construct a serrated polygon inside the generating circle and let another be placed

around it so that the difference of the sum of the sides of the two is equal to X.

Let the parallel sides of the polygon be extended so that they cut the curve at oo.

Construct the tangent ou and let the infinite serrated polygon be circumscribed

around the cycloid. Construct the lines oe such that they are parallel to AD. Let
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an infinite serrated polygon be inserted into the cycloid.

Since the lines ou are tangent to the cycloid, they are parallel and equal to the

lines DB each to the other, since they are both constrained by parallel lines. There-

fore the sides of the polygon circumscribed around the cycloid must be equal to

the sides of the polygon which are circumscribed around the generating circle. And

since the lines oe are parallel and equal to the lines ND, the sides of the inserted

polygon into the cycloid must be the same as those of the one inserted into the

generating circle. Therefore the sides of the circumscribed polygon around the cy-

cloid exceed double the diameter by an excess of DC, based on Problem 5.

Say the curve is smaller than the sides of the circumscribed polygon. Then by

Problem 5 the sides of the polygon inserted into the cycloid are less than twice

the diameter by a defect of DM ′. Say the curve is greater than the sides of the

polygon inserted into the cycloid. Then again by Problem 5 the sides of the cir-

cumscribed polygon around the cycloid exceed double the diameter by an excess

of DC. Therefore the curve of the semi-cycloid is neither more nor less than twice

the diameter. Thus the curve of the primary cycloid is four times the diameter of

the generating circle.

Corollary 4.1: The arc length of any portion of the curve cut back to the vertex

is two times the subtense drawn from the section of the base of the portion and of

the generator.

The theorem proved the arc length of the cycloid to be four times the diameter of

the generating circle. Half the arc length is two times the diameter of the generat-

ing circle. Using the method from the theorem and the same figure, it is proven
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that the arc length of any portion of the curve cut back to the vertex (such as

oo’A) is two times the subtense AD’.

4.2 Results

Wren’s main approach to solving the length of the cycloid curve utilized infinite se-

ries. While he used the simplest of infinite processes, his method applies ideas from

calculus that are recognizable today. At the time there was no definitive process

used regarding infinite series, but the cycloid curve was beneficial in developing the

thought process for it. This deomnstrates once again how the idea of calculus was

in most mathematicians’ minds during the 17th century.

5 Brachistochrone Problem

In June 1696 Johann Bernoulli (1667-1748) posed the brachistochrone problem in

Acta Eruditorum. With an introduction directed to the leading mathematicians

of his time, he poses the following: “given two points A and B in a vertical plane,

what is the curve traced out by a point acted on only by gravity, which starts at

A and reaches B in the shortest time” [8]. The mathematicians who solved this

problem, including Johann Bernoulli, Jakob Bernoulli, Leibniz, and Newton, dis-

covered the cycloid curve to be the curve of quickest descent. Prior to their dis-

coveries, Galileo worked to solve the quickest descent curve in his 1638 paper Di-

alogues Concerning Two New Sciences [8]. While Galileo was correct in assuming

the curve would be some arc of infinite line segments, he was incorrect in deducing
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the arc to be that of a circle. Despite his incorrect solution, it was still significant

in the development of the correct solution. The following proofs are important be-

cause they proved to be fundamental to the birth and development of calculus of

variations.

5.1 Johann Bernoulli

Johann Bernoulli, a Swiss mathematician, was the first of the 17th century math-

ematicians to solve the problem in 1696. His proof relies on considering the path

of a light ray through a medium of arbitrarily varying densities, such that it be-

comes less dense from top to bottom. So as light enters the medium from above,

the speed becomes increasingly quicker as it moves down. Along with these con-

ditions, Johann Bernoulli’s proof relies on Fermat’s minimum time principle and

Snell’s law.

Theorem 5.1: The solution to the Brachistochrone Problem is the cycloid curve.
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Figure 17: Johann Bernoulli’s Brachistochrone Problem

Proof: Define AGD to be the medium bounded by the horizontal line AG where

A is the luminous point, or point of light. Let the curve AHE be given with ver-

tical axis AD, and let the ordinate HC determine the density of the medium at

height AC. Construct the curve AMK and the circle GLK. Set x = AC, y =

CM , and t = CH, and for the infinitesimals let Cc, mn, and Mm be equal to dx,

dy, and dz respectively.

Let angle nMm, or θr, be the angle of refraction at M such that θr = nm
Mm

= dy
dz

.

According to Snell’s law, the ratio of the sine of the angle formed by the incident

ray over the velocity of light in that ray is equal to the sine of the angle formed

by the refracting ray over the velocity of light in that ray. Using this law, for the

path we want to find, this quantity has to be proportional to the velocity t such

that dy
dz

= 1
a
t for some positive constant a. Using this formula and the Pythagorean
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Theorem for dz2 = dx2 + dy2, the following holds:

dy2 =
t2

a2
dz2 =

t2

a2
dx2 +

t2

a2
dy2 =

t2

a2 − t2
dx2

dy

dx
=

t√
a2 − t2

(1)

Galileo’s law of falling bodies states that in a vacuum the velocity t is proportional

to the square root of the falling height. Therefore set t =
√
ax, where a is just a

constant and x is the height AC, and substitutes it into equation (1) to get:

dy =

√
x

a− x
dx (2)

Johann Bernoulli recognized this to be the differential equation of the cycloid curve,

so he concluded that the brachistochrone is the ordinary cycloid. This claim is

dependent on being able to integrate the differential equation, which is done by

rewriting equation (2) as the following:

dy =
1

2

adx√
ax− x2

− 1

2

a− 2x√
ax− x2

dx (3)

The second term on the right hand side can be integrated as followed:

∫
a− 2x

2
√
ax− x2

dx =
√
ax− x2 + C (4)

Let L be the point where the segment HC and the circle GLK intersect. Con-

struct LG and LN where LN is the radius of the circumference GLK with diame-

ter GK = a and GO = x. Consider triangle LNO, where it follows that LN = a
2
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and NO = a− a
2
. Using the Pythagorean Theorem for triangle LNO, the following

equations are found:

LO2 = (
a

2
)2 − (x− a

2
)2

LO =
√
ax− x2 (5)

Next Johann Bernoulli claims that the first term on the right-hand side of the dif-

ferential equation is the differential arc(GL).

∫
a

2
√
ax− x2

dx =

∫ √[
d(
√
ax− x2)

]2
+ dx2 =

∫ √
dLO2 + dOG2

∫
a

2
√
ax− x2

dx = arc(GL) (6)

Utilizing the derived equations, it is inferred that

CM = y =

∫
dy = arc(GL)− LO

And since it is know

MO = CO − CM = CO − arc(GL) + LO

= semicircleGLK − arc(GL) + LO

= arc(LK) + LO

and MO = ML + LO, it can be concluded that arc(LK) = ML. Johann Bernoulli

concludes his prove by saying, “by taking into account the definition of the cycloid,
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the equation readily yields that the curve AMK that solves the differential equa-

tion is a cycloid” [2].

5.2 Jakob Bernoulli

Jakob Bernoulli (1655-1705), Swiss mathematician and brother of Johann Bernoulli,

accepted the challenge of solving the brachistochrone problem in 1696. In con-

trast to his brother’s solution, Jakob Bernoulli had a more methodical and general

approach that later became the basis of calculus of variations. While he doesn’t

use calculus specifically, both he and his brother utilize the differential equation

to solve the problem. His influential proof relies on “the use of similar triangles,

some hand-waving regarding infinitesimals, and the concept of stationary points of

functions” [1]. A stationary point of a function, also known as the local extrema,

is a point where the rate of change is zero for that function. And since the brachis-

tochrone minimizes descent time, “the rate of change of descent time must be zero

with respect to infinitesimal variation of the brachistochrone path” [1].

Theorem 5.2: The solution to the Brachistochrone Problem is the cycloid curve.

42



Figure 18: Jakob Bernoulli’s Analytic Method

Proof: Let AB be the least descent curve in Figure 18 with two points, C and

D, on the curve. Jakob Bernoulli claims that arc(CD), out of all the arcs, is the

arc where a falling body travels through the fastest. If, say, the body traveled

quicker on a sub arc(CED), then ACEDB, instead of ACDB, must be the curve

of quickest descent. Let C and D be infinitely close on the curve ACDB and point

L be on the segment EI, where E is the midpoint between C and F , in such a way

that GL is the differential of GE. Also let lines AH, EI, and FD be parallel and

HF be orthogonal to them.

Since CGD is the minimizing arc, by construction, through C and D, then

tCD + tLD = tCG + tGD
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Figure 19: Jakob Bernoulli’s Geometric Method

where tCD is the time descent from C to D. Moving the equation around gives

tCG − tCL = tLD − tGD (7)

If CG is considered an inclined plane, the law of the inclined plane, which says

the velocity of a falling object will be equal over any inclined plane as long as the

heights are equal, gives

CE

CG
=
tCE
tCG

CE

CL
=
tCE
tCL
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Euclid’s proposition V.24 lets Jakob Bernoulli conclude

CE

CG− CL
=

tCE
tCG − tCL

(8)

Let LM be perpendicular to CG where M intersects CG. Since GL is an infinites-

imal of higher order with respect to EG, it can be assumed that CG − CL = MG.

Consider triangles MLG and CEG. They are similar triangles because they both

have a right angle by construction and they share a similar angle: angle CGE and

angle LGM . This conclusion yields

EG

CG
=
MG

GL

Multiply both sides of the equation by tCE

tCG−tCL
to get:

EG • tEC
CG(tCG − tCL)

=
CE

GL
(9)

This same process with the segment NG being perpendicular to LD, where LN =

LD–GD and triangles GID and LNG are similar triangles, gives

GI • tEF
GD(tLD − tGD)

=
EF

GL
(10)

Comparing the equations (9) and (10), while taking into consideration equation (7)

and that CE = EF , gives the following:

EG • tEC
GI • tEF

=
CG

GD
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According to the gravity law, which states that T =
√

2
g

l√
h
, it is concluded that

CG

GD
=

EG√
HC
GI√
HE

(11)

Therefore each segment of the minimizing curve is directly proportional to the ab-

scissa and inversely proportional to the square root of the ordinate. This property

belongs to and characterizes the isochronous curve of Huygens, which means the

curve of quickest descent is the cycloid curve.

Along with this analytic proof, Jakob Bernoulli provides a geometric solution.

Consider Figure 19 where AGP is the cycloid with generating circle RV P . It is

apparent that the two triangles GDI and GNX are similar because they share

two angles, therefore GD
GI

= GN
GX

. Then by definition of a tangent to the cycloid

and since G and V are on the same line segment, GN is parallel to V P , which

means they have three angles in common. Therefore triangles GNX and V PX

are similar and GN
GX

= V P
V X

. Next, it is known that triangles V PX and V RX are

similar, which means V P
V X

= V R
RX

. According to the geometric mean leg theorem,

V R =
√

(RP )(RX). Using substitution and the fact that HE = RX gives:

V R

RX
=

√
RP√
HE

Putting all these equations together gives the following:

GD

GI
=
GN

GX
=
V P

V X
=
V R

RX
=

√
RP√
HE

(12)

A similar method will show
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EG

CG
=

CS

CM
=
QS

QP
=
RS

RQ
=

√
RS√
RP

=

√
HC√
RP

(13)

Putting equations (12) and (13) together gives:

GD

CD
=
GI
√
RP
√
HC

GI
√
HE
√
RP

=
GI
√
HC

EG
√
HE

(14)

This gives the same formula as the analytic approach.

Finishing up the analytic approach, Jakob Bernoulli sets the following values, CG =

ds =
√
dx2 + dy2, HE = x, CE = dx, and EG = dy, and plugs it into the equa-

tion (11) to get

ds =
k√
x
dy

That is

dy

dx
=

√
x

k2 − x
(15)

Therefore the solution is the cycloid.

5.3 Leibniz

Gottfried Wilhelm Leibniz (1646-1716), a prominent German mathematician, sent

a letter to Johann Bernoulli containing his solution to the brachistochrone prob-

lem on 16 June 1696. Before beginning his proof, he claims that the curve they

are looking for is one where each line segment of the curve is directly proportional

to the latitude and inversely proportional to the square root of the altitude: ds =
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k√
x
dy. And since it is known that ds2 = dx2 + dy2, this equation can be manipu-

lated to get

dy

dx
=

√
x

k2 − x

This is the same method Jakob Bernoulli used to prove the equation he found was

the cycloid.

Theorem 5.3: The solution to the Brachistochrone Problem is the cycloid curve.

Figure 20: Leibniz’s Triangle
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Figure 21: Leibniz’s Parabola

Proof: Construct the triangle ABC. Bisects the height AC at E and find the

point D on the horizontal line through E and parallel to CB in such a way that

the quickest descent curve is the path ADB.

According to Galileo’s law of falling bodies

tAE =

√
AE

AC
tAC tEC =

(
1−

√
AE

AC

)
tAC

Then by the law of the inclined plane,

tAD =
AD

AE
tAE =

AD

AE

√
AE

AC
tAC

and

tDB =
DB

EC
tEC =

DB

EC

(
1−

√
AE

AC

)
tAC
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The time it takes to go from A to D and from D to B is

tADB =

[
AD

AE

√
AE

AC
+
DB

EC

(
1−

√
AE

AC

)]
tAC

Since D is the only varying point, on the quantities AD and DB vary when D

varies.

It is also known that DB2 = EC2 + (CB − ED)2 and AD2 = AE2 + ED2 from

the Pythagorean Theorem. Rewriting the previous equation of while substituting

in new values gives

tADB =

[√
AE2 + ED2

AE

√
AE

AC
+

√
EC2 + (CB − ED)2

EC

(
1−

√
AE

AC

)]
tAC

Differentiate the equation and set it equal to zero to get the following:

ED

AD2
tAD =

FB

DB2
tDB (16)

Given this equation, Leibniz constructs Figure 21. Construct parabola AE with

vertex A and axis AB, such that a body falls vertically from A to B in the time

BE. Let AC be the brachistochrone and B1, B2, and B3 be equidistance apart.

If AC is the brachistochrone and B1, B2, and B3 are equidistant, then

tC1C2

D1C2

(C1C2)2
= tC2C3

D2C3

(C2C3)2
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using equation (16). According to Galileo’s law,

tC1C2 =
C1C2

C1D1

tC1D1 tC2C3 =
C2C3

C2D2

tC2D2

Plug these two equations into the previous one to get

D1C2

C1C2

tC1D1 =
D2C3

C2C3

tC2D2

since C1D1 = C2D2. Manipulating the equation more gives

D1C2

D2C3

=
C1C2

C2C3

• tC2D2

tC1D1

It is known that tAB1 = B1E1, tAB2 = B2E2, tAB1 + tB1B2 = B2E2, tAB1 + tB1B2 =

B1E1 + F1E2, and tB1B2 = F1E2. Using this, it can be found that

D1C2

D2C3

=
C1C2

C2C3

• F2E3

F1E2

Since D1C2 ∝ dy, F1E2 = tB1B2 ∝
√
x, and C1C2 ∝ ds, the initial equation

ds = k√
x
dy is proven and the curve of least descent is the cycloid.

5.4 Newton

Sir Isaac Newton (1643-1727), an English mathematician published his solution

anonymously twice, once in the January 1697 issue of the Philosophical Transac-

tions and once in the May 1697 issue of Act Eruditorum. Unfortunately, “in New-
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ton’s paper appears no reason as to why the solution should be a cycloid and there

is anywhere no record of the method followed by Newton to face Bernoulli’s chal-

lenge to be found” [2]. While there is little information to be found on Newton’s

method, it can be inferred that he reasoned in geometric terms and it is suggested

that it is similar to Johann Bernoulli’s method.

5.5 Results

One similarity found between the methods of each mathematician was their use

of proportions. Both Leibniz and Jakob Bernoulli found that the element of line

is directly proportional to the element of latitude and inversely proportional to

the square root of the altitude. This proportion gives the differential equation of

the cycloid curve. These three also had a similar method in which they would find

properties unique to the cycloid in order to determine the curve of quickest descent

is the cycloid. And when comparing the methods used to solve the brachistochrone

problem, it’s important to focus on the relations to calculus. Both Johann and

Jakob Bernoulli had different methods, but they ended the same way in which they

found the differential equation of the cycloid curve and declared the problem to be

solved. Leibniz too had a similar method where he found the differential equation

and knew the solution to be the upwards-facing cycloid. It’s not surprising that

the methods involved differential equations, an integral part of calculus, because

by this time calculus was known. In fact, their ability to recognize the curve by

the differential equation demonstrates the spread of the subject, along with adding

to that spread. Leibniz claimed that it was calculus that gave him the curve he
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sought and Jakob Bernoulli’s method is said to be the basis of the calculus of vari-

ations.

6 Conclusion

The cycloid curve was integral in the development of 17th century mathematics.

New methods of tangents, areas, and arc lengths to the curve were able to be dis-

covered because these methods could be found without the use of an equation .

And because the curve possessed such unique qualities, it was useful in adapting a

general method that could be applied to any curve. Among the many great qual-

ities of the cycloid curve, one that stands out is its support in the development

of calculus. During the early to mid-17th century calculus was in the air and in

the minds of many distinguished mathematicians. Their work with the cycloid

curve helped to bring it out into the world for others to see, improve upon their

methods, and develop entirely new methods. Most mathematicians discussed were

in contact with one another and were able to view each other’s methods. All the

work they did became an introduction to what is used in calculus today. Their

original solutions required extensive thought and insight, but with the invention

of calculus they have become simple exercises.
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